Amorphous transformer core manufacturer and supplier by TRANSMART

High quality nanocrystalline cores manufacturer and supplier: Nanocrystalline soft magnetic materials are a class of advanced materials that have garnered significant attention in recent years due to their unique properties and potential applications. These materials consist of nanoscale grains, typically ranging from a few to several tens of nanometers in size, which results in an ultrafine microstructure. This fine grain structure allows for improved magnetic properties such as high permeability, low coercivity, and low core losses compared to conventional soft magnetic materials. The enhanced performance of nanocrystalline soft magnetic materials makes them highly suitable for various technological applications, including power electronics, transformers, sensors, and electromagnetic shielding. Such as:Nanocrystalline Ribbons. See extra info on amorphous cores.

Application field of nano magnetic core: Noise is the main circuit interference source in many power electronic devices. Various filter elements must be used to reduce noise. As the main component of differential mode inductance, magnetic particle core plays a key role in the filter. In order to obtain better filtering effect, the magnetic particle core material is required to have the following performance characteristics: high saturated magnetic induction, wide constant magnetic conductivity, good frequency characteristics, good AC / DC superposition characteristics and low loss characteristics. According to the above requirements, soft magnetic materials for inductance such as iron powder core, notched amorphous alloy core and iron nickel aluminum powder core (MPP powder core) have been developed successively. These materials have played their respective advantages and roles under different application conditions.

Fe based amorphous alloys are competing with silicon steel in power frequency and medium frequency fields. Compared with silicon steel, iron-based amorphous alloy has the following advantages and disadvantages. The saturated magnetic flux density BS of iron-based amorphous alloy is lower than that of silicon steel. The filling coefficient of Fe based amorphous alloy core is 0.84 ~ 0.86. It shows that Fe based amorphous alloy has better resistance to power waveform distortion than silicon steel.

Transmart amorphous core manufacturer & supplier is mainly engaged in the production and sales of amorphous core materials. The amorphous core transformer is one of Transmart Industrial’s multiple product series.Transmart Industrial’s amorphous C-core is manufactured in strict accordance with relevant national standards. Every detail matters in the production. Strict cost control promotes the production of high-quality and priced-low product. Such a amorphous transformer is up to customers’ needs for a highly cost-effective product.

We know that the actual transformer always works in AC state, and the power loss is not only on the resistance of the coil, but also in the iron core magnetized by alternating current. Usually, the power loss in the iron core is called “iron loss”. The iron loss is caused by two reasons, one is “hysteresis loss” and the other is “eddy current loss”. Nanocrystalline magnetic core is a small part with magnetic conductivity. There are nanocrystalline particles with small particles in the center of nanocrystalline magnetic core. The working principle of nanocrystalline magnetic core is to absorb the common mode current in the cable through the principle of induction heating and convert it into heat to dissipate. rolled silicon steel sheet is selected. It is cut into long pieces according to the size of the required iron core, and then overlapped into “day” shape or “mouth” shape. In principle, in order to reduce eddy current, the thinner the silicon steel sheet, the narrower the spliced strip, and the better the effect. This not only reduces the eddy current loss and temperature rise, but also saves the material of silicon steel sheet. But in fact, when making silicon steel sheet iron core. Not only from the above favorable factors, because making the iron core in that way will greatly increase the working hours and reduce the effective section of the iron core. Therefore, when making transformer iron core with silicon steel sheet, we should start from the specific situation, weigh the advantages and disadvantages and choose the best size. See extra info on https://www.transmartcore.com/.

As for why it can boost and depressurize It needs to be explained by Lenz’s law The magnetic flux generated by the induced current always hinders the change of the original magnetic flux. When the original magnetic flux increases, the magnetic flux generated by the induced current is opposite to the original magnetic flux. In other words, the induced flux generated by the secondary winding is opposite to the main flux generated by the original winding, so the secondary winding has a low-level alternating voltage. So The iron core is the magnetic circuit part of the transformer The winding is the circuit part of the transformer.